0=-2(8x^2-5x-90)

Simple and best practice solution for 0=-2(8x^2-5x-90) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-2(8x^2-5x-90) equation:



0=-2(8x^2-5x-90)
We move all terms to the left:
0-(-2(8x^2-5x-90))=0
We add all the numbers together, and all the variables
-(-2(8x^2-5x-90))=0
We calculate terms in parentheses: -(-2(8x^2-5x-90)), so:
-2(8x^2-5x-90)
We multiply parentheses
-16x^2+10x+180
Back to the equation:
-(-16x^2+10x+180)
We get rid of parentheses
16x^2-10x-180=0
a = 16; b = -10; c = -180;
Δ = b2-4ac
Δ = -102-4·16·(-180)
Δ = 11620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11620}=\sqrt{4*2905}=\sqrt{4}*\sqrt{2905}=2\sqrt{2905}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{2905}}{2*16}=\frac{10-2\sqrt{2905}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{2905}}{2*16}=\frac{10+2\sqrt{2905}}{32} $

See similar equations:

| -7b+9=-33 | | (3b+23)+(12b+22)=180 | | 5a-3(2a-6)=14a+3 | | -4x+0.5(12x+24)=-7x-27 | | 5+3=18x | | 3x-5x-9=25 | | 8j-15=57 | | X=3-1.5x | | -40x+90=-35x-60 | | 3.96x3+73.6x2-450=0 | | 3x-55+2x-30=180 | | 0=8x^2-5x-90 | | 5b+8=43 | | 16s^2=81 | | 5/3x-2=10 | | 16y=384 | | 0.5y+2=8 | | 2x-3(x+10)+1=-1+2(x-7) | | -12=-3j | | 3x=9/13 | | 2(x+5)+8x+165=15x | | x-(1/2)=5(1/2) | | 8(12-1x)=3(x+21) | | 2(x-6)=12x-7 | | d/5.20=2.40 | | 5(3x-2)-2(-2x+10)=12x-9 | | 26+46=9z | | 2.10=+5x=49.10 | | 45p^2+182p-168=0 | | m-63.28=14.92 | | 6x+8x+80=472 | | 4m2+25=20m |

Equations solver categories